home *** CD-ROM | disk | FTP | other *** search
- .geometry "version 0.1";
- v1 = .free(-0.855978, -0.285326, "1");
- v2 = .free(-0.692935, 0.0652174, "2");
- v3 = .free(-0.369565, -0.326087, "3");
- l1 = .l.vv(v2, v3);
- l2 = .l.vv(v2, v1);
- l3 = .l.vv(v1, v3);
- l14 = .l.vlperp(v3, l2, .invisible, .longline);
- l15 = .l.vlperp(v2, l3, .invisible, .longline);
- l16 = .l.vlperp(v1, l1, .invisible, .longline);
- v23 = .v.ll(l1, l16, .magenta);
- v13 = .v.ll(l15, l3, .magenta);
- v12 = .v.ll(l14, l2, .magenta);
- l17 = .l.vv(v12, v13, .magenta);
- l18 = .l.vv(v13, v23, .magenta);
- ll19 = .l.vv(v23, v12, .magenta, .L0, .L1);
- l19 = .l.vv(v23, v12, .red, .L2, .L3, .L4, .L5, .L6, .L7);
- v11 = .v.lvmirror(l1, v1, .L1, .L2, .L3, .L4, .L5, .L6, .L7, "1'");
- l4 = .l.vv(v3, v11, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- l5 = .l.vv(v11, v2, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- v22 = .v.lvmirror(l4, v2, .L1, .L2, .L3, .L4, .L5, .L6, .L7, "2'");
- l6 = .l.vv(v3, v22, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- l7 = .l.vv(v22, v11, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- v33 = .v.lvmirror(l7, v3, .L1, .L2, .L3, .L4, .L5, .L6, .L7, "3'");
- l8 = .l.vv(v11, v33, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- l9 = .l.vv(v33, v22, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- v111 = .v.lvmirror(l9, v11, .L1, .L2, .L3, .L4, .L5, .L6, .L7, "1''");
- l10 = .l.vv(v33, v111, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- l11 = .l.vv(v111, v22, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- v222 = .v.lvmirror(l10, v22, .L1, .L2, .L3, .L4, .L5, .L6, .L7, "2''");
- l12 = .l.vv(v33, v222, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- l13 = .l.vv(v222, v111, .L1, .L2, .L3, .L4, .L5, .L6, .L7);
- vv12 = .v.lvmirror(l1, v12, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vv13 = .v.lvmirror(l1, v13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l20 = .l.vv(v23, vv12, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l21 = .l.vv(vv12, vv13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l22 = .l.vv(vv13, v23, .red, .L2, .L3, .L4, .L5, .L6, .L7);
- vvv23 = .v.lvmirror(l4, v23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vvv12 = .v.lvmirror(l4, vv12, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l23 = .l.vv(vv13, vvv12, .red, .L2, .L3, .L4, .L5, .L6, .L7);
- l24 = .l.vv(vvv12, vvv23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l25 = .l.vv(vvv23, vv13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vvvv23 = .v.lvmirror(l7, vvv23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vvvv13 = .v.lvmirror(l7, vv13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l26 = .l.vv(vvv12, vvvv13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l27 = .l.vv(vvvv13, vvvv23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l28 = .l.vv(vvvv23, vvv12, .red, .L2, .L3, .L4, .L5, .L6, .L7);
- vvvvv12 = .v.lvmirror(l9, vvv12, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vvvvv13 = .v.lvmirror(l9, vvvv13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l29 = .l.vv(vvvv23, vvvvv13, .red, .L2, .L3, .L4, .L5, .L6, .L7);
- l30 = .l.vv(vvvvv13, vvvvv12, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l31 = .l.vv(vvvvv12, vvvv23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vvvvvv12 = .v.lvmirror(l10, vvvvv12, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- vvvvvv23 = .v.lvmirror(l10, vvvv23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l32 = .l.vv(vvvvv13, vvvvvv12, .red, .L2, .L3, .L4, .L5, .L6, .L7);
- l33 = .l.vv(vvvvvv12, vvvvvv23, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- l34 = .l.vv(vvvvvv23, vvvvv13, .magenta, .L2, .L3, .L4, .L5, .L6, .L7);
- .text("Fagnano's Problem:", .L0);
- .text("", .L0);
- .text("Show that in an acute-angled triangle, the orthic triangle is the", .L0);
- .text("inscribed triangle of smallest perimeter. (The orthic triangle is", .L0);
- .text("the triangle whose vertices are the feet of the altitudes.)", .L0);
- .text("In the figure above, the perimeter of the green triangle is always", .L0);
- .text("greater than the perimeter of the purple triangle.", .L0);
- u12 = .vonl(l2, -0.753847, -0.0657441, .green, .cross);
- u23 = .vonl(l1, -0.52559, -0.137284, .green, .cross);
- u13 = .vonl(l3, -0.618726, -0.305208, .green, .cross);
- uu12 = .v.lvmirror(l1, u12, .green, .L3, .L4, .L5, .L6, .L7);
- uu13 = .v.lvmirror(l1, u13, .green, .L3, .L4, .L5, .L6, .L7);
- uuu23 = .v.lvmirror(l4, u23, .green, .L3, .L4, .L5, .L6, .L7);
- uuu12 = .v.lvmirror(l4, uu12, .green, .L3, .L4, .L5, .L6, .L7);
- uuuu23 = .v.lvmirror(l7, uuu23, .green, .L3, .L4, .L5, .L6, .L7);
- uuuu13 = .v.lvmirror(l7, uu13, .green, .L3, .L4, .L5, .L6, .L7);
- uuuuu12 = .v.lvmirror(l9, uuu12, .green, .L3, .L4, .L5, .L6, .L7);
- uuuuu13 = .v.lvmirror(l9, uuuu13, .green, .L3, .L4, .L5, .L6, .L7);
- uuuuuu12 = .v.lvmirror(l10, uuuuu12, .green, .L3, .L4, .L5, .L6, .L7);
- uuuuuu23 = .v.lvmirror(l10, uuuu23, .green, .L3, .L4, .L5, .L6, .L7);
- l35 = .l.vv(u12, u13, .green);
- l37 = .l.vv(u23, u13, .green);
- l39 = .l.vv(u23, uu12, .green, .L3, .L4, .L5, .L6, .L7);
- l40 = .l.vv(uu12, uu13, .green, .L3, .L4, .L5, .L6, .L7);
- l41 = .l.vv(uu13, uuu23, .green, .L3, .L4, .L5, .L6, .L7);
- l42 = .l.vv(uuu23, uuu12, .green, .L3, .L4, .L5, .L6, .L7);
- l43 = .l.vv(uuu12, uuuu13, .green, .L3, .L4, .L5, .L6, .L7);
- l44 = .l.vv(uuuu13, uuuu23, .green, .L3, .L4, .L5, .L6, .L7);
- l45 = .l.vv(uuuu23, uuuuu12, .green, .L3, .L4, .L5, .L6, .L7);
- l46 = .l.vv(uuuuu12, uuuuu13, .green, .L3, .L4, .L5, .L6, .L7);
- l47 = .l.vv(uuuuu13, uuuuuu23, .green, .L3, .L4, .L5, .L6, .L7);
- l48 = .l.vv(uuuuuu23, uuuuuu12, .green, .L3, .L4, .L5, .L6, .L7);
- ll49 = .l.vv(u12, u23, .green, .L0, .L1, .L2);
- l49 = .l.vv(u12, u23, .yellow, .L3, .L4, .L5, .L6, .L7);
- l50 = .l.vv(u23, uu13, .yellow, .L3, .L4, .L5, .L6, .L7);
- l51 = .l.vv(uu13, uuu12, .yellow, .L3, .L4, .L5, .L6, .L7);
- l52 = .l.vv(uuu12, uuuu23, .yellow, .L3, .L4, .L5, .L6, .L7);
- l53 = .l.vv(uuuu23, uuuuu13, .yellow, .L3, .L4, .L5, .L6, .L7);
- l54 = .l.vv(uuuuu13, uuuuuu12, .yellow, .L3, .L4, .L5, .L6, .L7);
- .text("Proof: First, reflect the original triangle across edge 23, then that", .L1);
- .text("triangle about 13, then about 12, then 23, and finally 31 as in the", .L1);
- .text("figure. Note that line 12 is parallel to line 1''2'' (this is easy", .L1);
- .text("to see just by adding up angles). You can also convince yourself", .L1);
- .text("that it's true by moving the points 1, 2, and 3 around.", .L1);
- .text("Next, see what happens when the orthic triangle is reflected through the", .L2);
- .text("same lines. The line in red is equal in length to twice the perimeter", .L2);
- .text("of the orthic triangle.", .L2);
- .text("Finally, note what happens when any other triangle is reflected.", .L3);
- .text("The line corresponding to twice the perimeter is shown in yellow.", .L3);
- .text("Since the beginning and end points of the red path and yellow path", .L3);
- .text("are the same distance along parallel lines, the total distance", .L3);
- .text("covered is the same. The red path, however, is always a straight", .L3);
- .text("line. The yellow path is at least as long, and usually longer.", .L3);
- .text(" -- QED", .L3);
-